

نگرشی جدید در انتخاب ترکیبات ضدعفونی پس از دوشش

بابک خرمیان دانشیار دانشگاه فردوسی مشهد

Ten-point mastitis control program

- 1. Udder hygiene and proper milking methods
- 2. Proper installation, function, and maintenance of milking equipment
- 3. Dry cow management and therapy
- 4. Appropriate therapy of mastitis cases during lactation
- 5. Culling of chronically infected cows.
- 6. Maintenance of an appropriate environment
- 7. Good record keeping
- 8. Monitoring udder health status
- 9. Periodic review of the udder health management program
- 10. Setting goals for udder health status.

Teat disinfectants

Excellent germicidal activity

Immediate action

Persistent action

Cost

Less affected by organic material

Non irritating

Effect on milker health

Residual

Color

Contagious mastitis

Postdip

Environmental mastitis

• Predip

- Contagious mastitis
- Opportunistic mastitis
- Reduction of milk somatic cell counts and increased milk yields

Pathogen type	PostMTD (n=201)	NoPostMTD (n=229)	SED	p value
Staph. aureus	0.04	0.10	0.023	0.018
Strep. uberis	0.04	0.11	0.024	0.007
Strep. dysgalactiae	0.02	0.03	0.014	>0.05
CNS	0.09	0.20	0.032	0.001
Corynebacterium spp.	0.78	0.91	0.029	<0.001

Proportion of cows that developed new intramammary infections, where cows received either a post-milking teat disinfection group (n=230), that was sprayed with an iodine-based disinfectant (TeatguardPlus) for a complete lactation, or to a non-disinfected group (n=239).

Williamson et al., 2013

Process of infection

Disinfectant	Spectrum of action	Examples
Sterilants	all microorganisms, including bacterial spores	 Heat higher concentrations of hydrogen peroxide and peracetic acid, (in 6–10 h)
High level Disinfection	almost all microorganisms, but not spores	 hydrogen peroxide peracetic acid
Intermediate Level Disinfection	almost all vegetative bacteria, fungi, tubercle bacilli and enveloped and lipid viruses	 Alcohols Hypochlorites iodophor
Low level Disinfection	not efficient for most bacteria, tubercle bacilli, spores, fungi and viruses	 phenolics quaternary ammonium compounds

Disinfectant resistance

Environmental Research 195 (2021) 110897

Contents lists available at ScienceDirect

Environmental Research

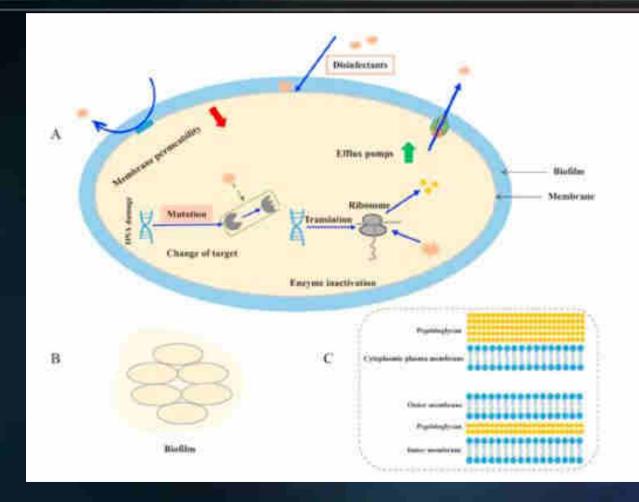
journal homepage: www.elsevier.com/locate/envres

Review article

Disinfectant resistance in bacteria: Mechanisms, spread, and resolution strategies

environmenta

Chaoyu Tong^a, Hong Hu^{a,**}, Gang Chen^{b,*}, Zhengyan Li^a, Aifeng Li^a, Jianye Zhang^b


^a Collage of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China ^b College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China

ARTICLE INFO

Keywords: Disinfectants Multidrug resistant bacteria Resistance mechanisms Disinfectant resistance gene Resolution strategies

ABSTRACT

Disinfectants are widely acknowledged for removing microorganisms from the surface of the objects and transmission media. However, the emergence of disinfectant resistance has become a severe threat to the safety of life and health and the rational allocation of resources due to the reduced disinfectant effectiveness. The horizontal gene transfer (HGT) of disinfectant resistance genes has also expanded the resistant flora, making the situation worse. This review focused on the resistance mechanisms of disinfectant resistant bacteria on biofilms, cell membrane permeability, efflux pumps, degradable enzymes, and disinfectant targets. Efflux can be the fastest and most effective resistance mechanism for bacteria to respond to stress. The *qac* genes, located on some plasmids which can transmit resistance through conjugative transfer, are the most commonly reported in the study of disinfectant resistance genes. Whether the *qac* genes can be transferred through transformation or transduction is still unclear. Studying the factors affecting the resistance of bacteria to disinfectant scan find breakthrough methods to more adequately deal with the problem of reduced disinfectant effectiveness. It has been confirmed that the interaction of probiotics and bacteria or the addition of 4-oxazolidinone can inhibit the formation of biofilms. Chemicals such as eugenol and indole derivatives can increase bacterial sensitivity by reducing the expression of efflux pumps. The role of these findings in anti-disinfectant resistance has proved invaluable.

- Disinfectants diffusion is limited by biofilm
- Blocking effect of cell membrane
- Efflux pump systems
- Enzyme inactivation
- Target alterations

Table 2

Information about the disinfectant resistance genes when first reported.

Gene	Bacteria Location		Reference	
sugE(C)	Escherichia coli	Chromosome	Chung et al. (2002)	
emrE	Escherichia coli	Chromosome	Paulsen et al. (1996)	
ydgE/	Escherichia coli	Chromosome	Drew et al. (2002)	
ydgF	25 E. 19257 E.			
mdfA	Escherichia coli	Chromosome	Edgar et al. (1997)	
qacA	Staphylococcus aureus	Plasmid (pSK57)	Gillespie et al. (1986)	
qacB	Staphylococcus aureus	Plasmid (pSK23)	Paulien et al. (1996)	
qacC	Staphylococcus aureus	Plasmid (pSK89)	Littlejohn et al. (1992)	
qacD	Staphylococcus aureus	Plasmid (pSK41)	Littlejohn et al. (1991)	
qacE	Klebsiella pneumoniae	plasmid (pR751)	Littlejohn et al. (1991)	
qacF	Enteroter aerogenes	Class 1 integron (In40)	Paulsen et al. (1996)	
gacG	Staphylococci sp.	Plasmid (pST94)	Ploy et al. (1998)	
qacH	Staphylococcus saprophyticus	plasmid (p2H6)	Heir et al. (1999)	
qacJ	Staphylococcus intermedius	Plasmid (pNVH01)	Heir et al. (1998)	
qacZ	Enterococcus faecalis	Plasmid (pOR123)	Bjorland et al. (2003)	
sugE(P)	Salmonella sp.	Plasmid (pSN254)	Braga et al. (2011)	
sugE(P)	Salmonella sp.	Plasmid (pSN254)	Welch et al. (2007)	

Brazilian Journal of Microbiology (2007) 38:644-648 ISSN 1517-8382

DISINFECTANT-RESISTANT BACTERIA IN BUENOS AIRES CITY HOSPITAL WASTEWATER

L. Nuñez; J. Moretton

Cátedra de Higiene y Sanidad, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires

Submitted: December 14, 2006; Approved: September 20, 2007.

ABSTRACT

Large quantities of disinfectants are used in hospitals, externally on human skin or to eliminate microorganisms from inanimate objects. After use, residual quantities of these products reach the wastewater, exposing the bacteria that survive in hospital wastewaters to a wide range of biocides that could act as a selective pressure for the development of resistance. Increasing attention has been directed recently to the resistance of bacteria to disinfectants. The aim of this paper was to determine the disinfectant bacterial resistance pattern of the microflora released to the urban sewer system by hospital effluents. The characterization of the waste water microflora was performed by determination of the CFU of heterotrophic bacteria, fecal indicator bacteria, *Pseudomonas* sp. and *Staphylococcus sp.*, in a Buenos Aires hospital effluent. The bacterial resistance to the disinfectants more frequently used in the hospital practice, glutaraldehyde, chlorhexidine and povidone-iodine, was then evaluated. Disinfectant resistant bacterial strains were isolated and typified. Between 10³ and 10⁶ chlorexidine resistant bacteria/100 mL were isolated from the samples. Bacteria resistant to other disinfectants ranged between 10³ and 10⁴ /100 mL. The bacterial population resistant to desinfectants to was mainly composed by *Enterobacteriaceae, Staphylococcus* spp. and *Bacillus* spp, which are highly associated to nosocomial infections. The results obtained show that the hospital effluents are of importance in the bacterial resistance selection process, particularly in the case of disinfectants.

Key words: disinfectant, resistance, hospital effluent

Table 2. Bacterial resistance to disinfectant.

	Povidone-iodine	Glutaraldehyde	Chlorhexidine
	UFC/100 mL	UFC/100mL	UFC/100 mL
Mean	7.7×10^{3}	5.0 x 10 ³	6.8 x 10 ⁵
Minimum	2.0×10^{3}	2.0×10^{3}	$1.0 \ge 10^3$
Maximum	2.0×10^4	2.4×10^4	6.0 x 10 ⁶

Review

Reduced Susceptibility and Increased Resistance of Bacteria against Disinfectants: A Systematic Review

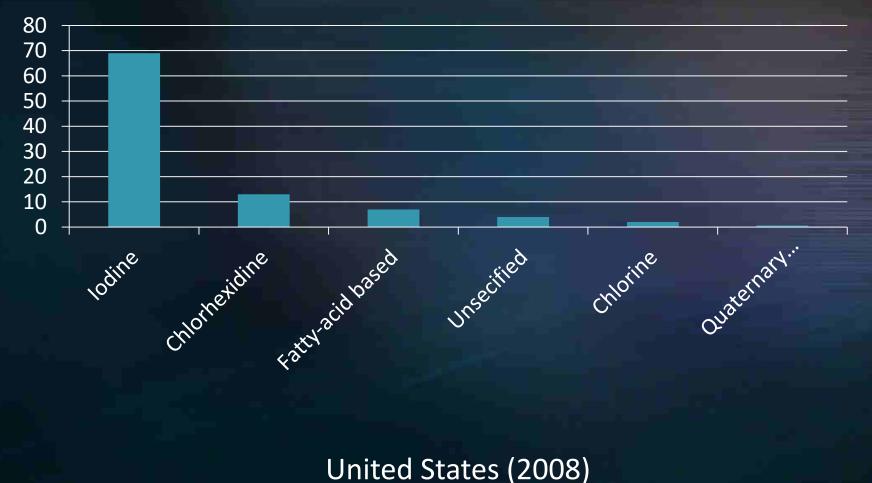
Urška Rozman 1,*0, Marko Pušnik 1, Sergej Kmetec 10, Darja Duh 2 and Sonja Šostar Turk 1

- ¹ Faculty of Health Sciences, University of Maribor, Zitna ulica 15, 2000 Maribor, Slovenia; pusnik.marco@gmail.com (M.P.); sergej.kmetec1@um.si (S.K.); scnja.sostar@um.si (S.Š.T.)
- ² Chemicals Office of the Republic of Slovenia, Ajdovščina 4, 1000 Ljubljana, Slovenia; darja.duh99@gov.si
- Correspondence: urska.rozman@um.si; Tel.: +386-2-300-47-52

Abstract: Disinfectants are used to reduce the concentration of pathogenic microorganisms to a safe level and help to prevent the transmission of infectious diseases. However, bacteria have a tremendous ability to respond to chemical stress caused by biocides, where overuse and improper use of disinfectants can be reflected in a reduced susceptibility of microorganisms. This review aims to describe whether mutations and thus decreased susceptibility to disinfectants occur in bacteria during disinfectant exposure. A systematic literature review following PRISMA guidelines was conducted with the databases PubMed, Science Direct and Web of Science. For the final analysis, 28 sources that remained of interest were included. Articles describing reduced susceptibility or the resistance of bacteria against seven different disinfectants were identified. The important deviation of the minimum inhibitory concentration was observed in multiple studies for disinfectants based on triclosan and chlorhexidine. A reduced susceptibility to disinfectants and potentially related problems with antibiotic resistance in clinically important bacterial strains are increasing. Since the use of disinfectants in the community is rising, it is clear that reasonable use of available and effective disinfectants is needed. It is necessary to develop and adopt strategies to control disinfectant resistance.

Keywords: antimicrobial resistance; susceptibility; disinfectants; bacteria

- A reduced susceptibility to disinfectants and potentially related problems with antibiotic resistance in clinically important bacterial strains are increasing.
- Since the use of disinfectants in the community is rising, it is clear that reasonable use of available and effective disinfectants is needed. It is necessary to develop and adopt strategies to control disinfectant resistance.



Citation: Rozman, U.; Pušnik, M.; Kmetec, S.; Duh, D.; Šostar Turk, S. Reduced Susceptibility and Increased Resistance of Bacteria against Disinfectants: A Systematic Review. *Microorganisms* 2021, *9*, 2550. https://doi.org/10.3390/

Most commonly used postdip in USA

postdip use (%)

List of Approved Teat Dips, Solutions, Wipes, Udder Washes And Other Topical Udder/Teat Products

July 5, 2019

Dairy Farmers of Canada would like to thank the Veterinary Drugs Directorate for their collaboration in developing this list of approved teat dips, antiseptic teat solutions, wipes, udder washes and other topical udder/teat products.

This list now also includes Veterinary Health Products (VHPs) which can be used topically on udders and teats. VHPs are veterinary drugs in dosage form that are considered low-risk. VHPs cannot be sold or represented for the use in the diagnosis, treatment, mitigation of a disease, disorder or abnormal physical state, or its symptoms but instead promote or maintain overall good health and wellbeing. Veterinary Health Products which have been notified are issued a Notification Number (NN).

This list is not intended to be all-encompassing and is subject to change, and it is only considered current as of the date above.

The list is alphabetical and not in any order of priority or recommendation.

For additional information:

- Health Canada's Drug Product Database: <u>https://health-products.canada.ca/dpd-bdpp/index-eng.jsp</u>
- List of Notified Veterinary Health Products (VHP): <u>https://health-products.canada.ca/vhp-psa/en/product-list</u>
- · Drug Statuses of products below are 'Marketed' unless stated otherwise:
 - Marketed: refers to an active DIN that is currently being sold in Canada.
 - Approved: refers to an active DIN that has been reviewed and authorized for sale in Canada but has not yet been marketed in Canada.
 - Dormant: refers to an active DIN that was previously marketed in Canada but for which there have been no sales for period of at least 12 months.

Dairy Farmers of Canada

List-of-Approved-Post-Dips (2019)	Number
Iodine	57
Chlorhexidine	25
Sodium chlorite+Lactic acid	6+1
Hydrogen peroxide	4
Lactic acid	1
Glycolic acid	1

Fitzpatrick et al. Irish Veterinary Journal (2021) 74:1 https://doi.org/10.1186/s13620-020-00179-7

Irish Veterinary Journal

RESEARCH

Open Access

The effect of disinfectant ingredients on teat skin bacteria associated with mastitis in Irish dairy herds

Sarah Rose Fitzpatrick^{1,2}, Mary Garvey², Jim Flynn¹, Bernadette O'Brien¹ and David Gleeson^{1*}

Abstract

Background: Teat disinfection is an important step in the control of mastitis within a dairy herd. The objective of this study was to evaluate the effectiveness of 96 commercially available teat disinfectant products in Ireland against bacterial isolates on teat skin. Teat disinfection products were applied to the teats of seventeen Holstein– Friesian cows. A split-udder model was used where one cow received two different teat disinfection products on each day. A composite swab sample was taken of the left teats and the right teats before and after teat disinfectant application. Swab samples were plated onto 3 different selective agars to enumerate bacterial counts of streptococcal, staphylococcal and coliform isolates.

Results: Streptococcal isolates were the most prominent bacterial group recovered on teat swabs taken before the application of a teat disinfection product (55.0%), followed by staphylococcal isolates (41.3%) and coliform isolates (3.7%). Products were reclassified by active ingredients (n = 9) for analysis. These ingredient groups included; chlorhexidine, chlorine dioxide, diamine, iodine, iodine and lactic acid, lactic acid, lactic acid and chlorhexidine, lactic acid and hydrogen peroxide, and lactic acid and salicylic acid. The ingredient group, chlorine dioxide, resulted in comparable reductions to the iodine group for streptococcal isolates. The ingredient group, iodine combined with lactic acid, resulted in the greatest reduction of staphylococcal isolates. When observing products individually, a product containing 1.6% w/w lactic acid combined with hydrogen peroxide was the most effective at reducing streptococcal isolates on the teat skin, whereas a product containing lactic acid combined with 0.6% w/w chlorhexidine was the most effective against staphylococcal isolates. Minor differences were observed regarding the relationship between effectiveness and active ingredient concentration between products.

Conclusions: This study suggests that some teat disinfectant products achieve a higher reduction in bacterial levels against different specific bacterial groups on teat skin than other products. Therefore, when choosing a teat disinfectant product, the bacteria in the dairy herds' environment should be considered. Further studies are necessary to evaluate products efficacy against new IMIs and any possible effects on teat skin condition.

Keywords: Teat disinfection, mastitis, teat swabbing, bacterial load

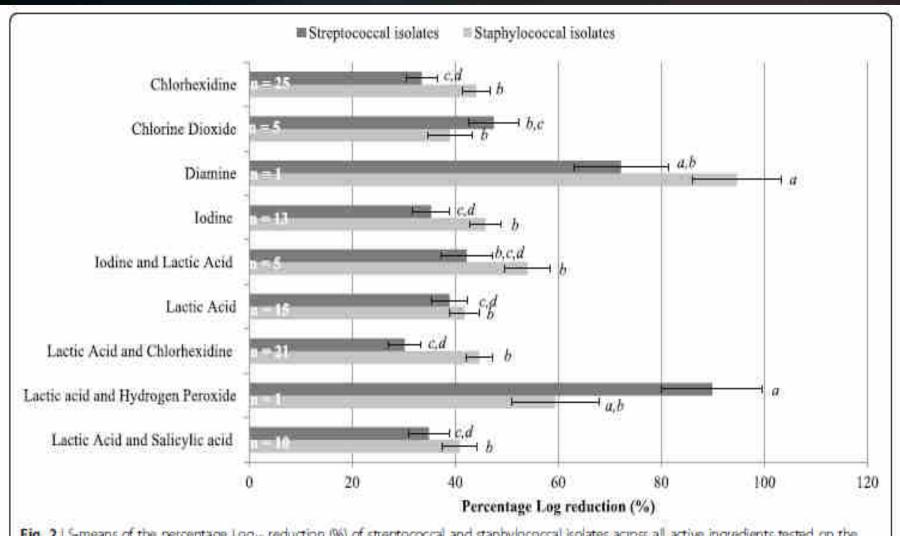


Fig. 2 L5-means of the percentage Log₁₀ reduction (%) of streptococcal and staphylococcal isolates across all active ingredients tested on the teat skin. Error bars indicates SEM. Percentage log reduction (%) determined from Log₁₀ PRE swab values.^{ord}Means with different letters differ significantly

Time exposure

Potency

lodometric titration

No. 17713

جمهوري اسلامي ايران Islamic Republic of Iran سازمان ملى استاندارد ايران Iran National Standards Organization ضدعفونى كنندهها و گندزداهاي شيميايي- آزمون سوسپانسيون كمي BS EN 1656: 2019

INSO

17713

1st Revision

2022

Identical with

براي ارزيابي فعاليت باكترى كشي ضدعفوني كنندهها واكندزداهاي شیمیایی مورد استفاده در مکانهای دامپزشکی- روش آزمون و الزامات (فاز ٢. مرحله ١)

Chemical disinfectants and antiseptics- Quantitative suspension test for the evaluation of bactericidal activity of chemical disinfectants and antiseptics used in the veterinary area- Test method and requirements (phase 2, step 1)

استاندارد ملي ايران IVVIT تجديدنظر اول

17-1

استاددارد على ايران شمارة ١٧٧١٢ الجديدنظر اول: سال ١٢٠١

1000	Lot See	A Same
- و حون		جدول (

	جدول (- شرايط أزمون	
ا فعالیت باکتری کشی برای ضدعقونی کننده های نوک پستان	فمالیت باکتری کشی روی سطوح	شرايط أزمون
Escherichia coli Staphylococcus aureus Streptococcus uberis	Enterococcus hirae Proteus hauseri Pseudomonas aeruginosa Staphylococcus aureus	لمبنه طيف اركاليسوهاي أزمون
هو اركانيسم أزمون مربوط	هو ارتخليسم أزمون مربوط	اضافى
ۍ C*۵	در فواسا	دمای آزمون
$\sigma = m T^{2}C$	$O^{\pm}(t) = 0$	کینیہ
(** ± 1)) ² C	(f-=1)*C	4100-0
فراصل min ۵ از min ۵ از ۱۲۰	در فواصل ۲۰۰ از ۲۰۵ تا min دو در	زمان ثمانى
۵۵ ± ۱ min + ۵۵ برای عدملونی کنندهای برک پستان پس ازشیردوشی مرای عدملونی کنندهای برک پستان بیش از شیردوشی	\min≠čs	کيت
۲۰ یا ۲۰۱۵ کا ۲۰۱۵ برای عدمقولی کنندمای او کا پستان پس از شیر بوشی ۲ min ۲۰۱۶ برای هدهوای کنندمای او کا پستان بیش از شیر بوشی	\r- <u>min</u> ≠ \-s	بىنىيە ا
Tals? is alla	اخلذتم	te effe
یس ازشیردهی: Shi- gʻl بودر شیر	t,+g/l البومين كاوى	الودكى سطح بايين
یش از شیردوشی <mark>، ۵</mark> ۱ ه.۲۰ البومین کلوی	ا/≣ ۱۰ عماره محمر به تلاوه 1+ ≣۱ البومين كاون	الودعى سلح بالا
الدر ماند مربوط	هر مانه مربوط	الدافي
	20 E	مران Proteus vuligacis شاخط شد، بود

Halogens react not only with living microorganisms but also with their environment, that is, dead bacteria, dissolved proteins, and amino acids.

روش آزمون	حد مجاز	واحد اندازه گیری	نتيجه آزمون	ویژگی/ شرح آزمون	رديف
ISIRI 17713	یزرگٹر مساریS	کاهش لگاريتمي	7	ارزیابی و تعیین فعالیت باکتری کشی (استافیلوکوکوس اورتوس)	1
ISIRI 17713	بزرگترساری5	كاهش لگاريتمي	7	ارزیایی و تعیین فعالیت باکتری کشی استر پتوکوکوس آگالاکتیکه	2
ISIRI 17713	بزرگترمساوی5	كاهش لكاريتمي	7	ارزیابی و تعیین فعالیت باکتری کشی استریتوکوکوس اوبریس	3
ISIRI 17713	بزرگترمساوی؟	کاهش لگاريتمي	7	ارزیابی و تعیین فعالیت باکتری کشی (اشرشیا کلی)	4
and the second second second					ضيحات

ارزیلی و تعبین فعالیت باکتری کشی اشرشیا کلی ATCC ۱۰۵۳۶ طبق ISIRI ۱۷۷۱۳ در غلظت ۱۰۰٪ فراورده، شرایط ازمون کثیف، دمای ۲۵ درجه سانتیگراد و مدت زمان ۳۰ دقیقه لتجام شد فراورده باید بتولد حداقل ۵ لگارینم کاهش را طبق ISIRI ۱۷۷۱۲ نشان دهد این فراورده دارای خاصیت باکتری کشی است.

ارزیلی و تعیین فعالیت باکتری کشی استافیلوکوکوس اورئوس ATCC ۶۵۲۸ طبق ISIRI ۱۷۷۱۳ در غلظت ۱۰۰٪ فراورده، شرایط آزمون کثیف، دمای ۲۵ درجه سانتیگراد و مدت زمان ۳۰ دقیقه انجام شد. فراورده باید بتواند حداقل ۵ لگاریتم کاهش را طبق ISIRI ۱۷۷۱۳ نشان دهد این فراورده دارای خاصیت باکتری کشی است.

ارزبانی و تعیین فعالیت باکتری کشی استریتوکوکوس یوبریس ATCC ۱۹۴۴ طبق ISIRI ۱۷۷۱۲ در غلظت ۱۰۰٪ فراورده، شرایط آزمون کثیف، دمای ۲۵ درجه سانتیگراد و مدت زمان ۳۰ دقیقه انجام شد فراورده باید بتولد حداقل ۵ لگاریتم کاهش را طبق ISIRI ۱۷۷۱۲ لندان دهد. این فرآورده دارای خاصیت باکتری کشی است.

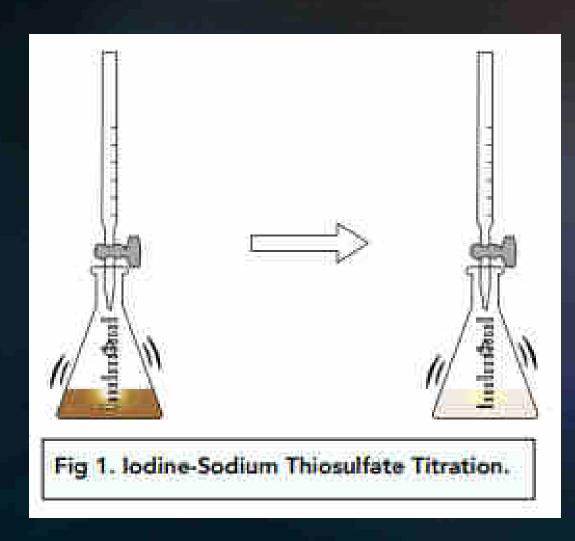
ارزیلی و تعیین فعالیت باکتری کشی استریتوکوکوس آکلاکتیه PTCC ۱۸۶۸ طبق ISIRI ۱۷۷۱۳ در غلظت ۱۰۰٪ فرآورده، شرایط آزمون کثیف، دمای ۲۵ درجه سانتیگراد و مدت زمان ۲۰ دقیقه انجام شد فراورده باید بتواند حداقل ۵ لگاربتم گاهش را طبق ISIRI ۱۷۷۱۳ نشان دهد این فرآورده دارای خاصیت باکتری کشی است.

PASTEUR VETERINARY LABORATORY & CLINIC DINASCIRI DI SASCHAM 31, TOHEED 30 TEHRAN IRAN TEL (1952) (563)1430 - 66932777 WWW pasteurvetlab, com

کد متقاضمی :

نوع أزمایش : اثر بخشی بر روی باکتری

تاريخ پاسخ : ۲/۰۶/۰۸


بسم در زمان اثر ۴۰ ثانیه	شمارش تعداد میکروارگانو	سوسياتسيون		
دالت پاك cfu/mi حالت ألوده cfu/mi		دfu/ml باكتريايي	نوع میکروارگانیسم	
<1	<1	Y × 1."	Staphylococcus aureus	
<1	<1	Y × 1.'	Streptococcus agalactiae	
<1	<1	1×1.'	Streptococcus dysgalactiae	

، کننده

. 1/.

صحه گذار ي				
کنترل رقيق سازي – خنٽي سازي cfu/ml	کنترل سمیت خنثی کنندہ cfu/ml	شرایط تجربی cfu/ml	سوسپانسيون باکتريايي cfu/ml	ئوع میکروارگاتیسم
1 × 1."	1×1.7	1 × 1."	Y × 1."	Staphylococcus aureus
۱/٣ × ۱۰۲	1 × 1."	۲ × ۱۰ ۲	1/0 × 1.*	Streptococcus agalactiae
1 × 1*	1/0 × 1."	۱ × ۱۰۰	1/0 × 1."	Streptococcus dysgalactiae

حالت پاک : غلظت نهایی البومین ۲ g/L حالت الوده : غلظت نهایی البومین ۲ g/L و غلظت نهایی مخمر ۱۰ g/L در تعیین اثر بخشی ضد عفونی کننده از محلول ثاره بدون رقیق سازی استفاده شد.

Determining Efficacy of Teat Dip Products

- I. In vitro testing
- II. Experimental Challenge model
- III. Natural exposure model

Persistent action

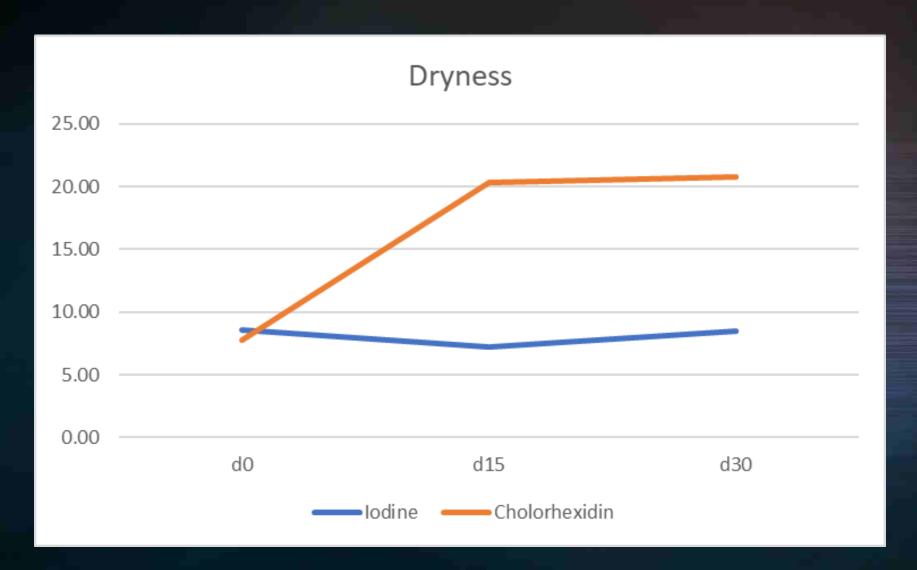
SCC

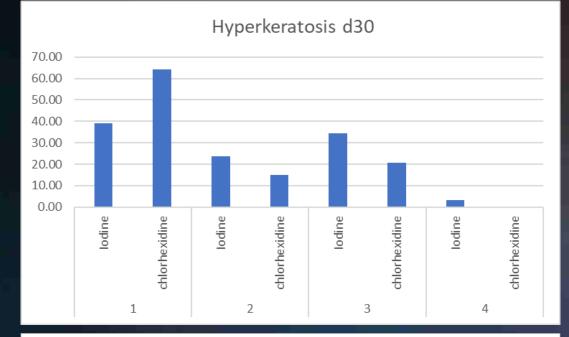
- Cell Count movement
- IMI
- Clinical Mastitis (score1&2)
- Teat condition
- Corynebacterium

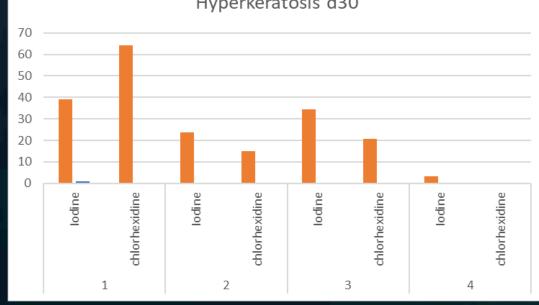
Chlorhexidine

Chlorine dioxide

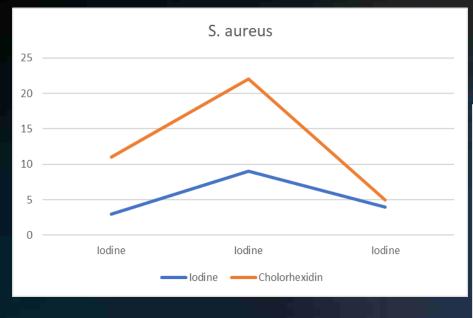
lodine

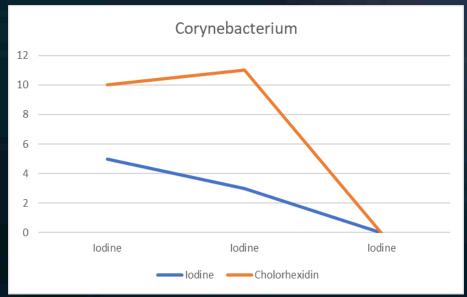

Chlorhexidine

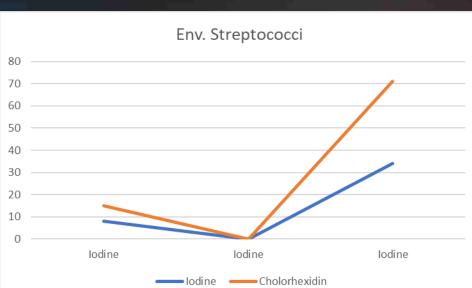

- Aim: compare the efficacy of two post-milking teat dips
- according to Hogan et al, a split-herd design was used.

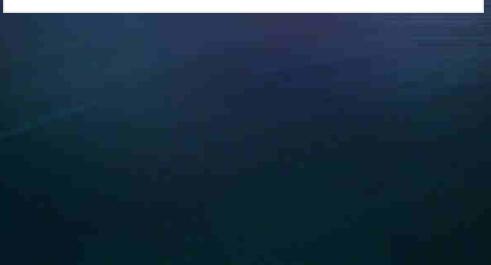

120 dairy cows

- Group 1 (n=60) iodine-formulated postdip
- Group 2 (n=60) chlorhexidine postdip. (Farmed co.)
- SCC: Day 0 and 30 of the study
- Teat skin swabs on Day 0, 15 and 30.
- (BTM) samples of both treatment groups (balance tank
- Teat skin condition (normal, dry and having open lesions)
- Hyperkeratosis score

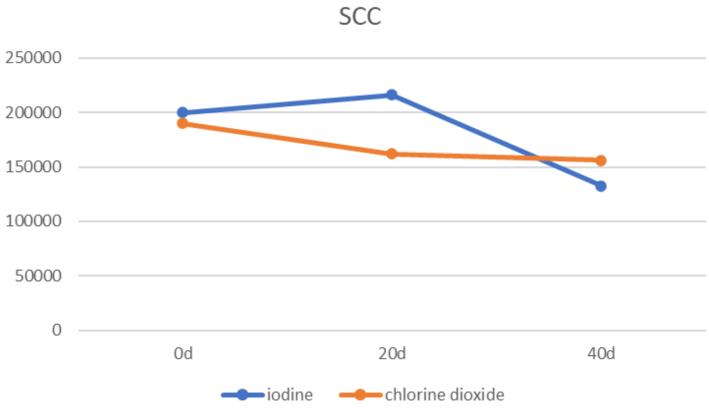

	lodine 1%	Chlorhexidine
Milk	33.0	26.2
SCC d30	64.4	83.2
Swab count d15	35.4	10.09
Swab count d30	48.6	7.9
aureus count d15	7.74	2.16
aureus count d30	2.67	1.36
CNS d15	8.36	4.01
CNS d30	1.64	0.541
Corynebacterium d15	1.85	0.54
Corynebacterium d30	4.62	0.9

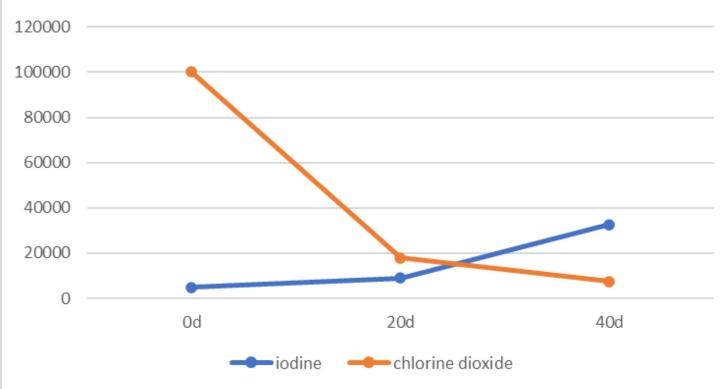






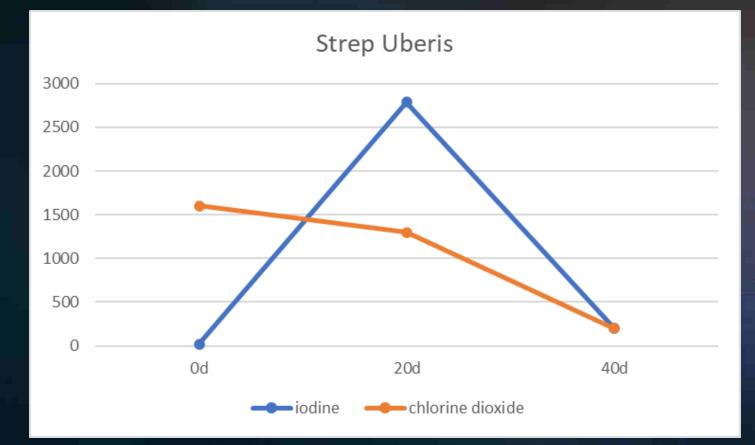
Hyperkeratosis d30



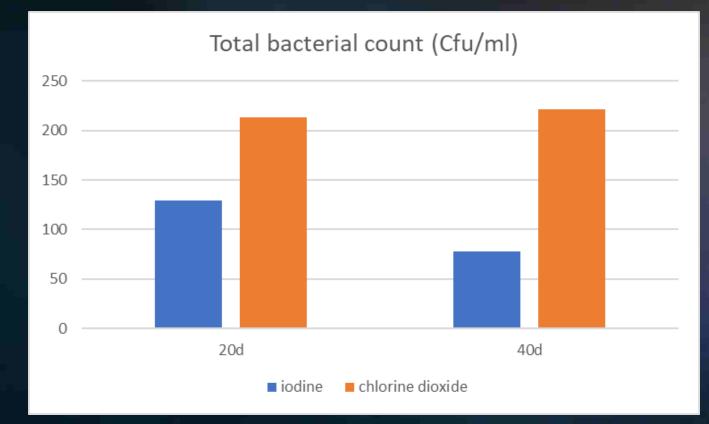


2. Chlorine dioxide + Lactic Acid

- این طرح در دامداری خزاعی از گاوداری های شیری صنعتی اطراف مشهد طی مدت ۴۰ روز از تاریخ ۲۵
 آبان ۱۴۰۲ لغایت ۹ دی ۱۴۰۲ انجام گرفت.
- به منظور انجام این مطالعه و مقایسه عملکرد دو محلول ضدعفونی کننده، طبق پروتکل ارائه شده توسط Hogan و همکاران از دیزاین Split-herd تعداد ۲۴۰ راس گاو هلشتاین وارد مطالعه شد.
 - به ۲ گروه ۱۲۰ راسی تقسیم شدند:
- گروه ۱ (n=120): گاوهایی که پس از شیردوشی طبق دستورالعمل NMC پست دیپ یده یـک درصـد دریافت می کنند
- گروه ۲ (n=120): گاوهایی که پست دیپ از نوع کلرین دی اکساید و اسید لاکتیک (راسامیکس) دریافت کردند.



Coliform Count



Coagulase negative staphylococcus

Swab

Dryness: 0 Vs 0

Clinical Mastitis: 2 cases in treatment group / 3 cases in Control group

No.	Group	SPC	Culture
6181	Control	over	CNS
7226	Control	over	CNS
6161	Control	over	CNS
99157	Control	23000	CNS
8312	Control	40000	Coagulase positive
7404	Control	over	Coagulase positive
6181	Control	38000	Coagulase positive
6181	Control	1400	Coagulase positive
99209	Control	4500	CNS
4081	Control	20000	Coagulase positive
7204	Treatment	over	CNS
8287	Treatment	14000	CNS
8114	Treatment	21000	Coagulase positive
8155	Treatment	31000	CNS
7304	Treatment	over	Coagulase positive
6061	Treatment	1100	Coagulase positive
3113	Treatment	5000	CNS
5221	Treatment	800	CNS
8093	Treatment	3200	CNS
8155	Treatment	1400	Coagulase positive
7073	Treatment	7500	CNS
7297	Treatment	300	CNS

ورم پستان تحت باليني

3. Povidone iodine

Disinfectants on an iodine basis can be divided into three main groups according to the solvent and substances interfering (by complexing) with iodine species:

- 1) Pure aqueous solutions
- 2) Alcoholic solutions
- 3) Iodophoric preparations

Iodine + high-molcular-weight carries = iodophore → allow slow, continuous release of free iodine

lodophors

- An iodophor is a complex of iodine with a carrier that has at least three functions:
 - To increase the solubility of iodine,
 - To provide a sustained-release reservoir of the halogen,
 - To reduce the equilibrium concentration of free molecular iodine.
- The carriers are usually neutral polymers, such as PVP, nonylphenoxy polyethoxyethanol, polyether glycols, polyvinyl alcohols, polyacrylic acid, polyamides, polyoxyalkylenes, and polysaccharides
- Surfactant

(NPE) nonylphenol ethoxylates / PVP

Reduced the infection rate 57.6% for major and 53.7% for minor pathogen

Foret et al., 2005

No significant difference in teat condition

Available iodine:

- iodine that can be titrated with sodium thiosulphate
- Free iodine:
- Total iodine:
 - iodide plus titratable iodine

The real <u>bactericidal</u> agent is <u>free</u> <u>molecular iodine</u>, because it is this species alone for which a correlation between concentration and bactericidal activity has been proved, and not for the total iodine or iodophor concentration Effectiveness of iodine germicides has <u>little</u> <u>dependence</u> on the iodine concentration. (Murdough and Pankey, 1993)

Efficacy of iodine teat dips free iodine (Gottardi, 1991)

Free iodine=uncomplexed or molecular iodine

Aqueous Solution

- For the system iodine/water, nine different equilibria are specified, which produce at least 10 new iodine species:
- I-, I_2 , I_3^- , I_5^- , I_6^{2-} , HOI, OI⁻, HI₂O⁻, I_2O^{2-} , H₂OI⁺, and IO₃⁻.

 $I_2 + H_2O \leftrightarrow HOI + I^- + H^+ (hydrolysis, K_1)$

 $HOI \leftrightarrow OI^- + H^+ (dissociation of HOI, K_2)$

 $I_2 + I^- \leftrightarrow I_3^-$ (triiodide formation, K_3)

 $HOI + H^+ \leftrightarrow H_2OI^+(protonization of HOI, K_4)$

 $I_3^- + I_2 \leftrightarrow I_5^- (pentaiodide formation, K_5)$

 $2I_3^- \leftrightarrow I_6^-(dimension of I_3^-, K_6)$

 $OI^- + I^- + H_2O \leftrightarrow HI_2O^- + OH^- (iodination of OI^-, K_7)$

 $\mathrm{HI}_{2}\mathrm{O}^{-} \leftrightarrow \mathrm{I}_{2}\mathrm{O}^{-} + \mathrm{H}^{+} \left(dissociation \, of \, HI_{2}O^{-}, \mathrm{K}_{8} \right)$

 $3HOI \leftrightarrow IO_3^- + 2I^- + 3H^+$ (disproportionation)

Seven different ions \rightarrow each with different germicidal activity

 \circ I_2

• hyoiodic acid [HOI]

PH and additional iodide are influencing equilibrium concentrations

 Iodine + high-molcular-weight carries = iodophore → allow slow, continuous release of free iodine

	(ناتاوست 1 درصد) Control	(ایلیا شیمی PVP-I (0.3%)
Sample size (quarter)	372 (93cows)	368 (92cows)
CMT (N)	306	352
CMT (T)	20	5
CMT (1)	16	3
CMT (2)	5	5
CMT (3)	0	0
IMI	11%	3.5%
S.aureus	6	3
CNS	19	9
Dryness	6	2
Hyperkeratosis 3	29 (7.79%)	29 (7.8%)
Hyperkeratosis 4	6 (1.6)	2 (0.5%)
Clinical Mastitis	0	0

Conclusions

